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Content cPrL

* Constitutive modelling
* Linear elasticity

* Non-linear elasticity
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Constitutive modelling

GENERAL CONSIDERATIONS

CONSTITUTIVE EQUATIONS
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General considerations

* The constitutive response expresses the link between changes in (effective) stresses and changes in
strains.

* Many models (hundreds!) exist which differ for the the mathematical framework, the choice of the
state variables, the physical phenomena which are reproduced.

* Some models are widely used so that they are generally available in all numerical codes intended for
geotechnical applications: isotropic elasticity, elastic-perfectly plastic Mohr-Coulomb, and Cam clay.

* The user has the responsibility to select the model to be used for the analysis.

* Awareness is needed of the particular features of soil history and soil response that are likely to be
important in a particular application and ensure that the constitutive model that is adopted is indeed
able to reproduce these features.

* In all modelling, adequate complexity should be sought.

Geomechanics- Fall 2024 Lecture 3 - ELASTICITY




=PrL

General considerations

* The fully reversible response upon unloading is the key element of elasticity. It is not possible to assess
if the behaviour is elastic if we do not check for permanent deformations once the load is removed.

* The various types of constitutive models can be identified according to the behaviour upon unloading.

Linear elasticity Nonlinear elasticity Elasto-plasticity Damage

Geomechanics- Fall 2024 Lecture 3 - ELASTICITY




General considerations

* Constitutive behavior depends on effective stresses.

* A one-to-one relationship between effective stresses and strains exists only in limited cases
(e.g. elasticity).

* In the general case, the constitutive model must be formulable in an incremental form.

ot o

N2
gl 8: g? &? ;
Elastic behaviour Elasto-plastic behaviour

One-to-one relationship
o= f(g) or
¢=[(o)

Relationship between o and ¢
depends on the stress path
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General statement of constitutive equations

» Stress-strain relationship in incremental form:

d() Denotes the increment of (.)

* General equation of stress-strain can be expressed:
’ —
do;j = Djjideg

Constitutive tensor rank 4:
34=81 components

dojy = Dy111d€11 + D111 degp + Dy113deg3 + Digp1deng + Dy122des,
+Djy123d€53 + Dy131d€31 + Dy132de3; + Dyq33dess
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Independent stress-strain components S

* Since the stress and strain tensors are symmetric (only 6 independent components), a vectorial
representation is often used (Voigt's form):

011 022 033 033 013 03]

[e11 €22 €33 &3 €13 &12]

* The general stress-strain relationship becomes

da:ﬂ Di111 D112z Di1zz D112z Dirrs Dirrz][dé1n]
dU 22 D2222 D2233 D2223 D2213 D2212 d€22
d0,33 — D3333 D3323 D3313 D3312 d€33
do’'ys D3323 D313 Daziz||ders
do'ys sym. Di313 Diz12||dess
Number of da'i,] L Di2121lde, ]
Independent
components: 6 21 6
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Linear Elasticity

ELASTIC CONSTANTS
GENERALIZED HOOKE’S EQUATION
TRIAXIAL STRESS CASE
ANISOTROPY

11
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Elasticity - Generalities cPrL

* D. M. Wood. Soil behaviour and critical state soil mechanics. Cambridge University Press. 1990.
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Elasticity - Generalities

* Elasticity - simple definition : Fully reversible deformation

Al : :
. . linear elastic
* Linear Elasticity
 Non-linear elasticity /‘
/
* Isotropic elasticity non-linear elastic
* Anisotropic elasticity
&
B
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Isotropic linear elasticity

Robert Hooke (1635-1703)

* English scientist active in many fields

* Author of the Hooke’s law (object of this lecture)

* Pioneer in Microscopy: author of Micrographia (1665)

e After Great Fire of London in 1666, he collaborated

in the reconstruction of the city

“Ut tensio, sic vis”
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To fill the vacancy of the enfuing page, | have here ad=
deda decimate of the centefmeof the Inventions [ intepd to
publifh, though poffibly notin the fame order, butas I can
get opportunity and leafure ; molt of which, I hope,
will beas ufeful to Mankind,, astheyare.yer unknown and
new.

t. A way of Repulating all firss of Watches or Time-
keepers, fo as to ke any way 1o equalize , if ot exceed the
Pendulum-Clocks wom ufed.

2. The trne Mathematical and Mechanichal form of all
manner faf Arches for Building, with the trauc butwent necelary
focachof them. A Problem which no drehiteitomick Wei
ter hath ever yet attempted , much lefs performed.  abeee
ddeceee fgaiitiiiii lmmmmnonnnsopre ssstecccuouuuaun,

3. The true Theery of Elatticity or Springinefs, and 4 par-
vicnlar Explication thereof in feversl Subjetts in vobich it is to

befound: dnd the way of computing the wrlsciry of Badies
movedby them. CTeTlinosssceum, g
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MADE BY

OB E RN H 0-°0.K-E;
Fellow of the Royal Society.

Hos ego, &c.
Sic w05 non vobis——.

[

LONDOWX,

Princed by 1. R. for Jobn elersyn Printer cothe Royal Swieiy,
at the Belfin 8¢, Payls Chorcheyard, 1676,




Isotropic linear elasticity cPrL

e Hooke’slaw in 1D

o
Elastic Young modulus __T__, -
/ L -1,
1 : gx__
E ! d f;
O=L"& x Lo — %o
. T ' i i do

Poisson ratio
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Isotropic linear elasticity cPrL

* Elastic relation in 3D

o, ~vlo,+o.)

o, ~vlo. +0.)
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Generalized Hooke’s equation in 3D

Stiffness form in terms of Young modulus E and Poisson coefficient v :

9 xx 1-v v v 0 0 0 réxx
T yy v o 1-v v 0 0 0 ||&y
O-,zz _ E 1% v 1—-v 0 0 0 €2z
oyl @+v)@-2v)[ O 0 0 1-2v 0 0 ||&xy
'z 0 0 0 0 1-2v 0 ||éz
o L 0 0 0 0 0 1 —2vilez,
0" ]

Tensor notation:

/
o-ij

_E v 5
T a+v) [= e + 2
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Generalized Hooke’s equation in 3D

Compliance form in terms of Young modulus E and Poisson coefficient v :

Exx 1 —v —v 0 0 0 7%=
Eyy —v 1 —v 0 0 0 [[9y
€2z _ l -V -V 1 0 0 0 O-,zz
Ey| E|O0 0 0 1+v 0 0 ||y
Eyz 0 0 0 0 1+v 0 ||o,,
E2x L0 0 O 0 0 1+vl|
Ny
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Generalized Hooke’s equation in 3D

Stiffness form in terms of bulk modulus K and shear modulus G :

_E o E
3(1-2v) 2(1+v) 4G 2G 2G
o kv K== k-2 0 0 o0
0 yx 3 3 3 -
o 2G 4G 2G
wl K- K+— K—=- 0 0 0 ||
OJZZ 3 3 3 <c"ZZ
| T|k-2E k-2 k2 0 0 o
. x -— -— -
Tensor notation: o 3 3 3 o
vz 0 0 0 26 0 0l
26 L0’
o-lij = (K - ?> Skk(sij + ZGS,:]' 2x i 8 8 g g ZOG 206
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Generalized Hooke’s equation in 3D

Compliance form in terms of bulk modulus K and shear modulus G :

K = E G= £
30-2v) 20+) G+3K 26-3K 26G-3K 0 o
9GK 18GK  18GK
26-3K G+3K 26-3K o |
Exx 18GK  9GK 18GK 7 xx
eyy| |26-3K 26-3K G+3K o [Ty
&z|_| 18GK  18GK  9GK 0'22
& 1 O_I
o 0 0 o — o oll®
yz 2G T yz
SZX 1 /
0 0 0 0 °C 0 [LO zx-
0 0 0 0 0 —
26/
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Generalized Hooke’s equation in 3D

Stiffness form in terms of Lame’s constants A and u :

3

O-,xx A+ 2u A A 0 0 0 7réxx
- Oyy A A+2u A 0 0 Of|&y
Tensor notation: ol | 2 1 A+2u 0 0 0 ||z
r Ony 0 0 0 2[1 0 0 Exy
0ij = Abjjep + 21 o 0 0 0 0 2u 0|z

yz
, 0 0 0 0 0 2Zullézx

0 zx
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Generalized Hooke’s equation in 3D

Compliance form in terms of Lame’s constants A and u :

2G

A=K—-—— u=G [ Atp -2 -2 0 0 o]
3 2u243 0 4pZ+6Au  4pZ+6Au
“2 A+p 2 o
- xx
xx 4p2+6Au  2u%243Au  4pZ+6Au 0 0 0 g
&yy -2 -2 A+u 0o 0 0 y
€zz | _ |ap2+6ap  4p2+6Ap  2p2+3Au 0 2z
- !
i 0 0 0 i 0 0f[7x
!
vz . o'y
LE7x 0 0 0 0O — 0 ’
2u L0 zx
1
0 0 0 0O 0 —
2ud
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Pairs of elastic constants

E Young modulus

9KG

3K+ G

V Poisson ratio

,_3K-2G
6K +2G

K Bulk modulus

P' = Kg,
_E
3(1-2v)

(G Shear modulus

7, =Gy,

G=E

2(1+v)

Geomechanics- Fall 2024
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/1 Lamé’s constant

o, .=Ag, +2ue,

Ev _§

“(tv)0-2) 3

U Lamé’s constant

_E
C2(1+v)

u=G




Special case: Triaxial test

z
Mean effective stress: p' = o1+ 032, + o3 = it -;20’r JGa =
Volumetric strain: &y =& t & a3 =g, + 28,
Deviatoric stress: q=q =0, —03=0,— 0,
Deviatoric strain: €a =73 (61 — &) = 3 (€q — &)

14 0 0] [o, 0 0 €11 0 0] [e, 0 0
O-ij = 0 Oy = 033 0 =|0 (3 0|et ‘Sij = 0 Erp = E33 0 =10 & 0

0 0 o 0 0 €33 0 0 &
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Isotropic linear elasticity in TX tests

de, = =[do, — 2vday,]

mw

Compliance form

dea] —21;] [daa]
de,]  El-v 1-v

!
dao,

!
do',

& =+ [—vdog + (1 -

Stiffness form

E

~ a+v(-2v)

* Matrices aren’t symmetric because the variables are disjointed

e Useful relations:

Geomechanics- Fall 2024

p] [1/3 2/3‘

agl]_[1 2/3 11
ol =11 —173]1
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de,
 de, |

_dgv_
_dgd_

1/3
1/3

1
2/3

1

~1/2]

2

—2/3,

1—v —21/”

; _dgv.
_de_

11de,
| de, |




Isotropic linear elasticity in TX tests

* In terms of conjugated stress/strain variables:

COMPLIANCE FORM

de,] [ 1 2 ] dsa] IR [dev] _[ 1 2 ]l[ 1 —21/] dac’l]
_dé‘d_ - _2/3 —2/3_ dé‘r dé‘d - 2/3 —2/3 El—y 1—v do’r’_

de,] [ 1 2 11 —ZV][ 2/3 dp’]
1

T ldeyl T12/3 —2/3lElv 1-v ~1/3
With:

3(1—21/) 0 ! 0 K = E Bulk Modul
de, _ l , dp’] _|x dp’] = 301 = 2v) u odulus
deqgl E 0 §(1+v) 0 1 (ldq

3G
= h M |
G 201+ v) Shear Modulus
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Isotropic linear elasticity in TX tests =PrL

* In terms of conjugated stress/strain variables:

STIFFNESS FORM

dp'] _ l - o‘a ] [1 —v 21/] [dea]
dq i _31 (1 + v)(l —2v) de,
1 2] . 1
dp'l _|= = E 1-v 2v]|3 de,
- =13 3 _ ] 1 1|l[d
dq 1+v)(1-2v) €d )
1 —11 § — E With:
(1 + v) ) _ K = m Bulk Modulus
dp ] _ E 3 dsv] _ [ ][dev]
dq 1Q+v)(1-2v) 0 3 (1 _221’)_ deg 0 3Glldeg G = 20T Shear Modulus
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Isotropic linear elasticity in TX tests =PrL

* Both stiffness and compliance forms show O in the non-diagonal terms: ey | = [1/K 0 ] dp
degy 0 1/3G|l 1 dq
» Volume change and distortions are uncoupled process
> Dilatancy? dp'| _[K 0 ] [dev'
| dq 0 3Gllde,)
+ Only two independent parameters: -
GIK
K = E _ 9KG tol
~3(1-2v) - G+3K
G 3(1-2v)
) = 05}
G K 2(1+v)
¢ E 3-2 X
21 +v) V="~ depends only on v 0.0 o
2 (? + 3) 0.0 0. 0.2 v 03 04 05
Wood, 2004, p. 102
Geomechanics- Fall 2024 Lecture 3 - ELASTICITY
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Isotropic linear elasticity in TX tests cPrL

Parameter determination from conventional CD tests

C D A
l o, l o,+Ac, 1
«— «—
o, o,
qu uw() p, p

back pressure

= Taqt
p 3 pltq
Ao,
Ap = Ap' = —

p=—F7—
3 3 :r‘: Aq Aq
_— = = 3
Ap  Ap’

Agq = Ag,,

Lecture 3 - ELASTICITY
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Isotropic linear elasticity in TX tests cPrL

Elastic parameters from the initial stages of CD triaxial tests

q q4 dq
. asdao,. =0 deg = 3G
dq = do), = de E 3G
dq
- —=3G
d deg
- —q =F
. s deg R
> &, > &4 !
de, = ap ydeg = ﬂ
de, = de, + 2de, v =" 1% =30
dey =142 dey de, _ 3G dp’
(1-2v) de, de, G o de, = 7d_q
&y v d&‘v &
- Te = 1-2v de, G
Ea, - —_— —
d&'d K
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Isotropic linear elasticity in TX tests =PrL

Elastic parameters from CU triaxial tests

2 de 2 3ds
No volume change de¢, =0 |:> deg = 3 [dea - (— —a>] =— 2= de, = deg = dg,

2 J| 3 2
q A
d d
3G d8d=d£a=%_)%=36;
a
. dp' =0
zero S dp’ no reason why K = +oo
de, =0 = K or (it is a property of the soil skeleton)
soitisdp’' =0
3
&y We cannot determine K from CU
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Isotropic linear elasticity in TX tests

Elastic parameters from CU triaxial tests y

* The direct link between the increase in mean total stress
(dp) and the generated excess pore water pressure
(du,, ) makes not possible to reproduce a dilatant
behavior in undrained shearing.

* The dp’ = 0 concept can be used to identify the limit of 9
the elastic behaviour.

Limit of elastic ---
behaviour
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Isotropic linear elasticity in TX tests =PrL

Elastic parameters from CU triaxial tests

1) Undrained bulk modulus K, =+ 8, =0

u

dev] — [1/Ku It means K, =+ = 3= =+ v, =05
Lo u

0 ”dp
1/3G,]11dq

deg )
2) deg=5—dq© G, =G (same stiffness)
3G,
E E E
Gy =t M
2(1+v) 3 2(1+v)
N N 3E . .
q u, ‘ E,=3G, =36 = Undrained and drained

2(1+v) parametersare linked!

3G
3) Theoretical development of excess water pressure

Uy I dp’'=0 (no volume change)
. d
C&, > g, dp =du,, = ?q (conventional triaxial o, = cost)
1 Uy,
du,, = §(3dsd6) =de,G - i, =G
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Isotropic linear elasticity in oedometric tests v

* Elastic parameters from oedometric tests

0,, = imposed

0, = 0y, Mixed control { —0

Exx = Eyy

Definition of Oedometric Modulus

zZz

dexx=deyy=0

1 ! ! !
dexy = 0= 1 [doy, — v(doy, + doy,)] Expression fork, for an isotropic

dol.(1—v) —vdal, = 0 linear elastic material
’ v ’ kO = v
doyy = mdo-zz 1—v
_doy, E(1-v)

4
= = = -G We need to assume one property (v for example
Boed = e “@rwva-2n X*3 = property ( ble)
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Anisotropic linear elasticity cPrL

* Soils deposits are formed in nature under gravity, resulting in possible different soil properties
in vertical and horizontal planes.

* A particular type of anisotropy which follows the axial symmetry with respect to any vertical axis
is called cross-anisotropy.

Ases of symmetry

Schematization

Opalinus Clay sample

~ | Shaly layer

'
“_:E 9 |Sandy layer

* The mechanical behaviour in all horizontal planes (h) is identical.

E. Crisci et al. 2021

* The mechanical behaviour in all vertical planes (v), passing through the axis of symmetry, is also
identical, but different to the one in the horizontal planes.
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Anisotropic linear elasticity cPrL

* For cross-anisotropy, the model has 7 constants: E,, Ey, Vin, Von, Vi, Gup @nd Gy,

8o',, #0
B el —
7 50,:{;\' *=0 X

!

oo yy #0 Vg: y
E, = 60,,/8¢,, Ep, = 50" 3e/ 855 Ey, = 60"y, /8¢, s
_ _ g #
Vo = _ngxfaezz Vihh = _6£yy/6£:rx Van = 5£xx/5£yy §
= =8¢y, /8¢, Vny = =877/ 8éxx Vi = —8¢z;/5€yy 5
80'y, #0 do vz 0 Horizontal direction
ey
g /]

/ [I | 80"y # 0

/ ! §
Gon = 60'xz/8Yxz Gyp = 60’}'2/5}’)/2 Gpp = 50"1}'/6]&}’
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Anisotropic linear elasticity

* Hooke’s equations for anisotropy often due to geological formation:

(Exx) | 1/Eh _th/Eh _Vvh/Ev 0 0 0 (Oxx)
Eyy —Vun/En 1/E, —Vun/Ey 0 0 0 Tyy
) €2z \ — —th/Eh _th/Eh l/EU 0 0 0 ) Ozz }
Yyz 0 0 0 1/G,p 0 0 lyz
Vzx 0 0 0 0 1/Gyp 0 Tzx
\Vxy/ 0 0 0 0 0 1/Gpp,. \Txy

* Sets of parameters: E,,, Ep,, Vpn, Vyn, Vay, Gpp @nd Gy
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Anisotropic linear elasticity

* The behaviour in a horizontal plane is isotropic:
Ey
Gpyp = ———m—
hh 2(1 + th)

* For thermodynamic reasons, the constitutive matrix must be symmetric:

Vhy Vyh

E, E,

Only 5 parameters are independent: E,,, Ey,, Vun, Von, @and Gy,

* If we rewrite the constitutive law for triaxial test and isotropic compression, we obtain 3
independent equations; so additional tests or assumptions are needed to determine the 5
parameters.
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Non-Linear Elasticity
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Non-linear elasticity - Generalities =PrL

* D. M. Wood. Soil behaviour and critical state soil mechanics. Cambridge University Press. 1990.

-

G/Gmax
l | | | |
0.0001 0.001 0.01 0.1 1 10
strain (%) : logarithmic scale
.
laboratory geophysics

i
) 0
resonant column (dynamic)

< -
local strain measurement

N
—— >
special triaxial

conventional triaxiai
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Small strain non-linear elasticity cPrL

In many practical geotechnical problems only a relatively small volume of soil experiences large
deformations.

* Assuming the same stiffness independently from the range of strains, would result in computing
great displacements.

Large strains

Small strains

Lecture 3 - ELASTICITY
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a,
Assumptions: homogeneous, elastic, isotropic medium :
frzy

Equations of motion
0%u, (0o, 0Tyy 0Tz
Poe? _<6x>+< ay >+< 52 ) %
0%u ot do ot
Yy _ Xy Yy Yz
P e _< o >+<6y>+< 3z >+X
0%u, (071, 07,y do,
p6t2_<6x>+<6y 5 ) 7%

Stress-strain relationships

Oy = Ae, + 2G g, Ty = GVxy
g, = A&, + 2G¢, Tz = GYys
o, = A&, + 2G¢, Tyz = GYyz

Geomechanics- Fall 2024

Strain-displacement relationships

__ Ouy __ Ouy
SX - dx ny - ay
ou u

— Y — X

y = dy }/XZ aaz
_ auz _ u—y
Z7 9z Vyz Y

Lecture 3 - ELASTICITY
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Three-dimensional wave propagation

Equations of motion

0%u, azuy 0%u, 0%u, 0%u, 0%u, 02w,
P ac2 6x6y+6xaz> +G<6x2 * dy? + 6zz> D p5z
0%u, 0%u, 0%u, 0%u, 0%u, 0%u, 0%u, 0%u,
— =(A+G —+ GVZ
e (“G)(axaer 32 +6yaz>+6<6x2 Tt aZZ> = 2) rgm =@+0 y
0%u, 0%*u, 0%u, 0%u, 0%u, 0%u, 0%u,
3) p
Pz =+ )(6x62+6yaz+ 622> G(axz ozt 622> T

2

S —(/1+G)< —(/1+G)—+GV2ux

2

=+ G)—+ GV%u,

Differentiating 1), 2), 3) with respect to x, y, z respectively and adding:

2

P oz at2 Ex i
2 2 adding 92 92
P = e D) poz =+ 6V + GV, = » = A+ 26)7%,
0%, 2
P57 = (/1+G) +GV2€Z
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Three-dimensional wave propagation

2 9%, [1+2G

d0°¢,
= (1+ 26G)V? = V2
p atz ( + ) g‘l] E> atz p g‘l]

During the propagation of a perturbation (wave), the
second time derivative of the strain is proportional to its
second spatial derivative, with a proportionality
constant that has the dimensions of a squared velocity.

, (A+26) A+ 26
W=—"—"">"W=|——
p p

Or in terms of K and G moduli:

2
A=K =26 > V, =

Geomechanics- Fall 2024

Source: IRIS (Incorporated Research Institutions for Seismology)
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Three-dimensional wave propagation cPrL

Starting from the equation of motion and differentiating 2) and 3) with respect to z and y respectively:

2

1y p 2% 46 Ly gy
p 2 = A Uy
66221}, A+ 6) aag, o ov? 0% du, I de, L ov ou,,
= R —— u —_ 2 = —
2) P dy y Y 22) P, = UG5, 9z
3 0%u, a+6) ¢, e 3 0?2 ou, i de, - ou,
— = e u _— =
) P2 0z z A Pamrgy - A5, dy
Subtracting eq. 3a and 2a:
0% (Ou, Ou, , (Ou, Ou, 0%w, 5
Pﬁ(ay‘ﬁ>—” <E‘E = rop = (Ve

l_Y_J

w,: rotation around x-axis
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Three-dimensional wave propagation

Doing the same manipulation for each couple of motion equation:

0%w 2w, |Gl
P = (Vo = oz = ol o
0w 2w, |Gl
y
pw = sza)y I:> atzx = ;Vzwx
0w 2w, |Gl
ST v T

During the propagation of a perturbation (wave), the

second time derivative of the strain is proportional to its

second spatial derivative, with a proportionality Source: IRIS (Incorporated Research Institutions for Seismology)
constant that has the dimensions of a squared velocity.
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Small strain non-linear elasticity =PrL

Cone Resistance Shear Wave Velocity
* In case of satured soils, P-waves are related to the q: (MPa) V, (m/sec)
volumetric stiffness of water so it is difficult to obtain O DL o O I B ey
. . . 4
information on the solid skeleton. ! o
2 T
i W
* On the contrary S-waves are used to obtain information : Norfolk | uf
i . . , ormation "
on the stiffness of the solid skeleton since water doesn’t ; '3\
have shear stiffness. E°’ : 5
= LE v \ o
-%_ 10 —_— 4 - B
[} ; :
™ S
1" < 1 m]
16 3 Yorktoyvn E
Formation ' & Diit }_]
18 e E | ===Continuous
$ : Sl
" .

P. W. Mayne 2020
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Small strain non-linear elasticity

* The range of small strains is identified in elastic domain

* Nonlinearity of shear modulus is modeled until a limit value of stress q; ; after this value is assumed
a constant shear modulus until yielding (q,).

q A
/ "
::' 3G, ;
i _]1 .
z_v ST et - Gy initial tangent shear modulus
£ L ’ S N o 1
T Pl g - gq4; limit of deviatoric small strain
0 : : 1 Y, " - G tangent shear modulus at q;,
D €ar  €aL &d
&4 Puzrin, 2012
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Small strain non-linear elasticity =PrL

b ‘ - G, initial tangent shear modulus
............-.:.‘.‘...l.“ "l—”)
- &g limit of deviatoric small strain
l' ET g - G tangent shear modulus at q;,
Puzrin, 2012

It is convenient use the following normalisation of the stresses and strains:

_4 _E_ _4  _ _fa
Y qL Ear @ 3GO k Ear
dy = 1 dq = Ge(x) G.(x) tangent shear modulus
dx  3Gyde; Gy . dy
inx=0andy =0 —=1
dx
* The normalized analytical function has to satisfy : < dy G
inx=xLandy=1 —:b:—L
dx Gy
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Small strain non-linear elasticity =PrL

Gt /Go 6 dy

Fore, < —_— ==
q €dL Gy dx

G
Fore, = ¢4, G—t = constant (until the yielding)
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Small strain non-linear elasticity

There are some analytical functions for curve-fitting the deviatoric stress-strain behaviour of soils at

small strains :

=PrL

g
* Hyperbolic model (Kondner, 1963) s -1 1
u _b_ ------------------------
. 1 1 4
— G a ’
o = ¢ - E,=—= ! — 3
aj +b1€ de (Cll +b1€) E =i
1 011 S_
* Mean pressure dependency model (Duncan & Chang, 1970) logE;
A
n n
E;=E, [ij logE; = nlog£+logE0 1
Po Po log Ey 10g£
Eo
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Summary

* In Geomechanics, geomaterials are viewed as engineering materials and
their behaviour are explained by constitutive models.

» Basic constitutive model for geomaterials: Linear and non-linear elasticity.

* Even simple, elasticity can be still used in some engineering cases to
appropriately address the behaviour of geomaterials.

[

Take home
things
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=PrL

Thank you for your attention

=k
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